
abbvie

Epigenetics in Pharmaceutical Development & Discovery

Robert W. Georgantas III, PhD

Associate Director Immunology Programs Pharmacogenetics & Pharmacogenomics Abbvie, inc.

Thurs, March 10th, 2016

Disclosures

These studies were funded by AbbVie.

AbbVie contributed to the study design, research, and interpretation of data, writing, reviewing, and approving the publication.

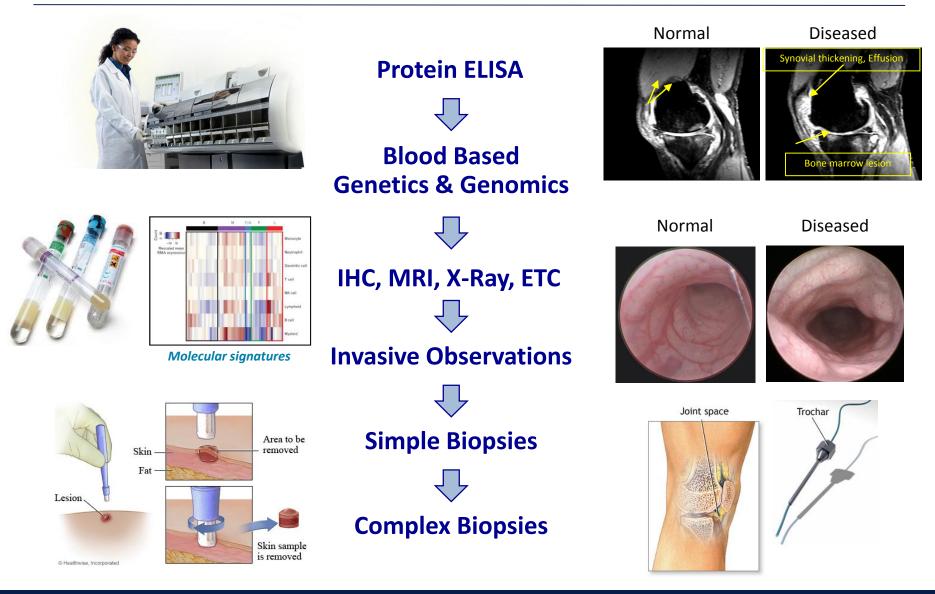
Robert Georgantas is an employee and shareholder of AbbVie.


Biomarkers Span a Broad Spectrum of Roles in Drug Development and Personalized Health Care

Diagnostic	 <u>Indicates presence or absence</u> of a specific physiological or pathophysiological <u>state or disease</u>
Prognostic	• <u>Baseline characteristics</u> that categorizes patients by degree of <u>risk for disease</u> <u>occurrence or progression</u> of a specific aspect of a disease
Predictive	• <u>Baseline characteristics</u> that categorizes patients by their <u>likelihood of</u> <u>response to a particular treatment</u> relative to no treatment. <u>May predict</u> <u>favorable or unfavorable response (i.e. AEs</u>)
Pharmacodynamic or activity	• <u>Change in biomarker shows that a biological response has occurred</u> in a patient who has received a therapeutic intervention and for which the magnitude of the change is considered pertinent to the response
Surrogate	• <u>Predict expected clinical benefit</u>

* Categories are not mutually exclusive

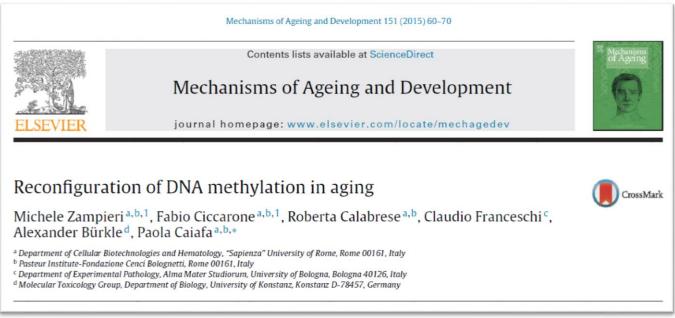
Guidance for Industry and FDA Staff. Qualification Process for Drug Development Tools Jan 2014


Biomarkers Affect All Stages of the Pharmaceutical Pipeline

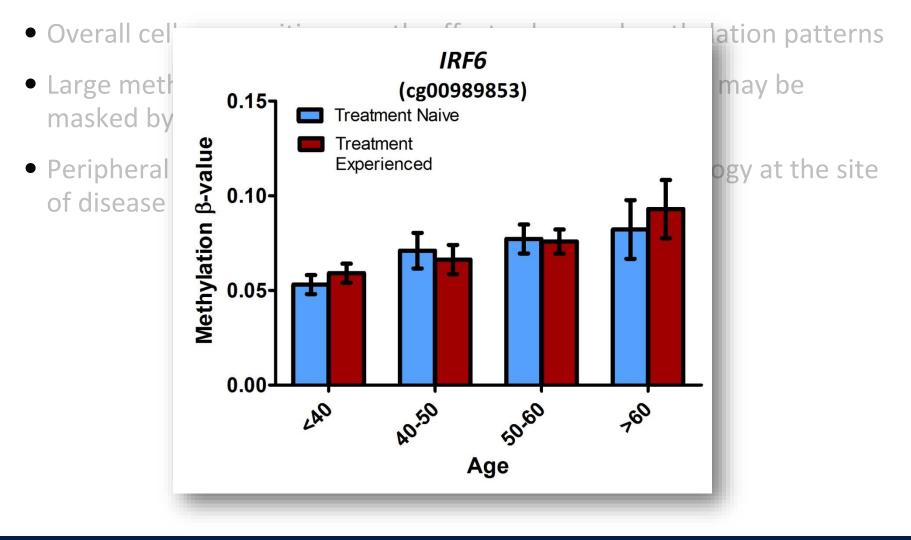
PHC/CDx study initiation point decision is influenced by:

- 1. Discovery Research Goals
- 2. Development Research Goals
- 3. Business Development input
- 4. Previous Clinical Data & Experience

Clinical Assay Availability and Invasiveness Yields a Rank Order of Biomarker Clinical Utility



DNA Methylation is a prime target for peripheral blood biomarkers


- DNA Methylation is highly stable
- Assay methods are robust and standardized
- High complexity of assayable elements
 - Current chip technologies assay 800,000 methylation sites
 - Roughly 28 million CpG in human genome
 - More probable to find cell and pathway specific methylation patterns
- Easily assayable from whole blood or purified cell populations
- Sample collection is clinical standard
 - Just a whole blood tube at the most basic
- Sample prep is automated
- Methylation changes have been robustly correlated with disease states

• Methylation Changes with age

- Overall cell composition greatly affects observed methylation patterns
- Large methylation changes in a small population of cells may be masked by other cells
- Peripheral blood samples may or may not reflect pathology at the site of disease action

• Methylation Changes with age

- Methylation Changes with age
- Overall cell composition greatly affects observed methylation pattern
- Large methylation changes in a small population of cells may be masked by other cells
- Peripheral blood samples may or may not reflect pathology at the site of disease action

Jaffe and Irizarry <i>Genome Biology</i> 2014, 15 :R31 http://genomebiology.com/2014/15/2/R31	Genome Biology	
RESEARCH	Open Access	
Accounting for cellular heterogeneity is critical in epigenome-wide association studies Andrew E Jaffe ^{1*} and Rafael A Irizarry ^{2*}		

- Methylation Changes with age
- Overall cell composition greatly affects observed methylation patterns
- Large methylation changes in a small population of cells may be masked by other cells
- Peripheral blood samples may or may not reflect pathology at the site of disease action

OPEN O ACCESS Freely available online

Differential DNA Methylation in Purified Human Blood Cells: Implications for Cell Lineage and Studies on Disease Susceptibility

Lovisa E. Reinius¹, Nathalie Acevedo², Maaike Joerink², Göran Pershagen³, Sven-Erik Dahlén³, Dario Greco¹, Cilla Söderhäll¹, Annika Scheynius², Juha Kere^{1,4,5}*

 Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden, 2 Department of Medicine Solna, Translational Immunology Unit, Karolinska Institutet, Stockholm, Sweden, 3 Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden, 4 Science for Life Laboratory, Stockholm, Sweden, 5 Department of Medical Genetics, University of Helsinki and Folkhälsan Institute of Genetics, Helsinki, Finland

PLOSone

- Methylation Changes with age
- Overall cell composition greatly affects observed methylation patterns
- Large methylation changes in a small population of cells may be masked by other cells
- Peripheral blood samples may or may not reflect pathology at the site of disease action

NATURE NEUROSCIENCE | ARTICLE

< 🖨

Alzheimer's disease: early alterations in brain DNA methylation at *ANK1*, *BIN1*, *RHBDF2* and other loci

Philip L De Jager, Gyan Srivastava, Katie Lunnon, Jeremy Burgess, Leonard C Schalkwyk, Lei Yu, Matthew L Eaton, Brendan T Keenan, Jason Ernst, Cristin McCabe, Anna Tang, Towfique Raj, Joseph Replogle, Wendy Brodeur, Stacey Gabriel, High S Chai, Curtis Younkin, Steven G Younkin, Fanggeng Zou, Moshe Szyf, Charles B Epstein, Julie A Schneider, Bradley E Bernstein, Alex Meissner, Nilufer Ertekin-Taner 🔹 et al.

Affiliations | Contributions | Corresponding authors

 Nature Neuroscience
 17, 1156–1163 (2014)
 doi:10.1038/nn.3786

 Received
 05 May 2014
 Accepted
 16 July 2014
 Published online
 17 August 2014

Epigenetics 8:10, 1030–1038; October 2013; © 2013 Landes Bioscience

Distinctive patterns of DNA methylation associated with Parkinson disease

Identification of concordant epigenetic changes in brain and peripheral blood leukocytes

Eliezer Masliah^{1,2}, Wilmar Dumaop², Douglas Galasko¹, and Paula Desplats^{1,*}

A Handful of Clinical Trials are Examining Methylation for Biomarkers and Target ID

Methylation as a Diagnostic Biomarker

- Early Diagnosis of Oral Cancer by Detecting p16 Methylation
- Validation of DNA Methylation Biomarkers for Oral Cancer Detection
- DNA Methylation Biomarkers for Cervical Cancer Screening
- Peripheral Blood DNA Methylation Markers for the Early Detection of Colorectal Carcinoma

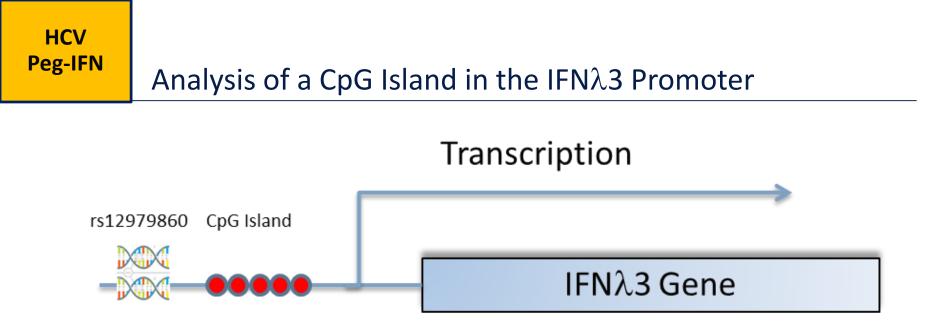
Methylation as a Pharmacodynamic Biomarker

- Methylation Bio-signature in Childhood Chronic Kidney Disease
- DNA Methylation Biomarkers and Metastasis of Gastric Carcinoma

Methylation for Drug Target Discovery

- Identification and Characterization of the Methylation Abnormalities on Whole Genome Among Infertile Men
- Studying DNA in Patients With Stage I, Stage II, Stage III, or Stage IV
 Ovarian Epithelial Cancer

abbvie

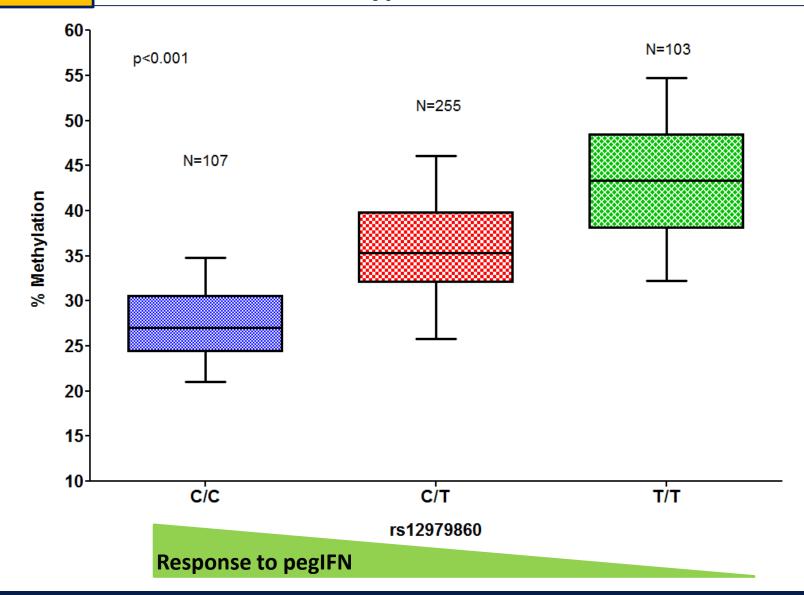

The Abbvie Experience with Drug Responder Methylation Biomarkers

Methylation predicts patient response peg-IFN for HCV treatment

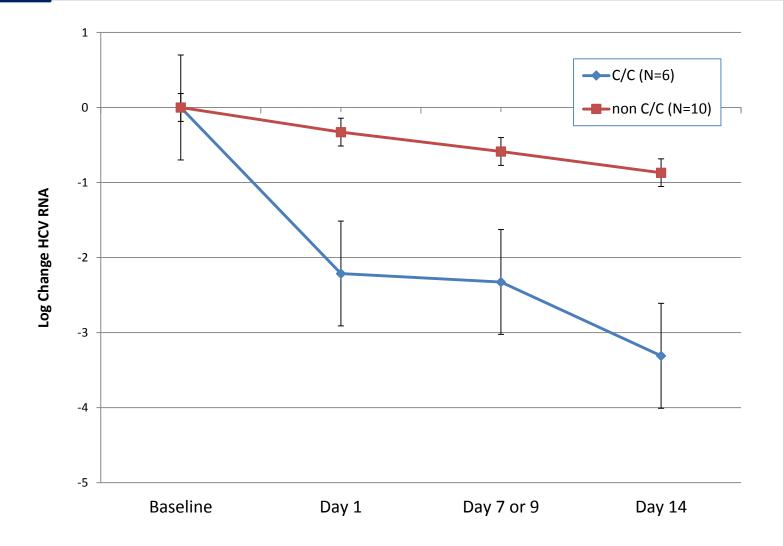
- The genetic polymorphism rs12979860 within the IFN λ 3 gene has been shown to have a large effect on response to treatment with pegylated interferon/ribaviron (pegIFN/RBV) in HCV-infected subjects
- The functional role of the rs12979860 single nucleotide polymorphism (SNP) has not been fully elucidated
- Epigenetic analysis of the IFNλ3 gene may provide functional information for this SNP, as well as identify additional factors involved in treatment response to pegIFN/RBV, and ultimately may be relevant for newer therapies directly targeting the HCV virus

HCV

- The IFN λ 3 CpG island investigated is in the 5' promoter region, approximately 1000 base pairs proximal to the rs12979860 polymorphism
- Working Hypotheses
 - RS12979860 SNPs may affect promoter methylation
 - Differential promoter methylation may correlate patient with response to pegIFN/RBV

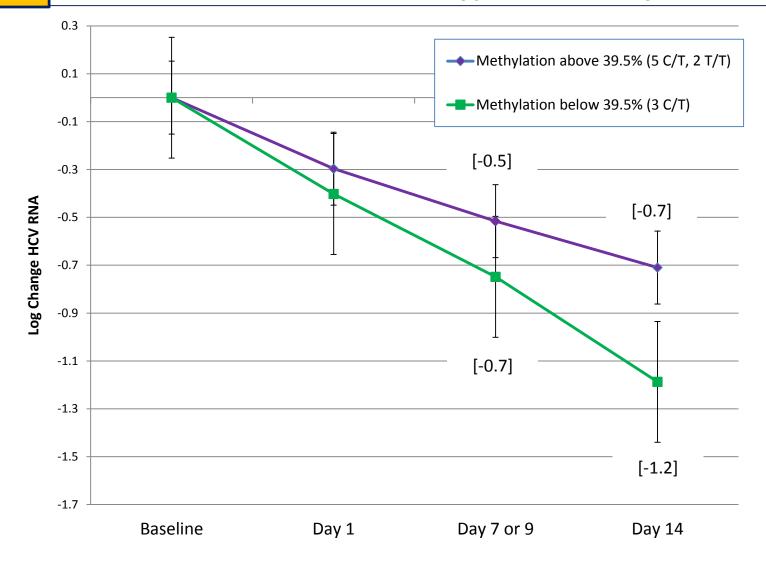

Analysis of IFN $\lambda3$ CpG Island

- DNA samples from whole blood (N=629) were assayed for methylation levels in the IFN λ 3 promoter by pyrosequencing
 - 127 healthy subjects
 - 465 subjects infected with HCV genotype 1
 - 359 subjects were treatment naïve
 - 106 subjects were prior treatment failures
 - 16 subjects infected with HCV genotype 2
 - 21 subjects infected with HCV genotype 3
- DNA samples from HCV-infected subjects came from clinical trials AVIATOR, Navigator, M11-602, M12-114
- rs12979860 allele status also determined
- Methylation levels varied considerably from subject to subject, ranging from 14% to 80%

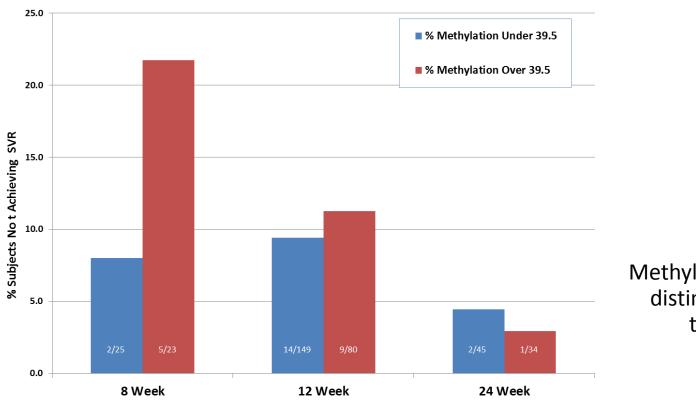

HCV

Peg-IFN

HCV Peg-IFN Status - HCV Genotype 1


Reduction in HCV Levels with pegIFN/RBV Treatment is Peg-IFN Associated with IFN λ 3 Genotype Status

HCV

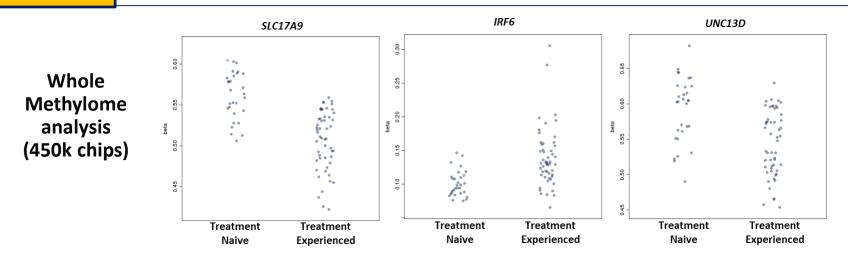

Reduction in HCV Levels with pegIFN/RBV Treatment is Associated with IFN λ 3 Genotype and Methylation Status

HCV

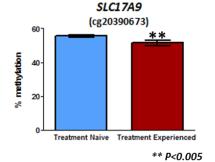
Peg-IFN

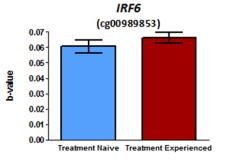
HCV Peg-IFN Levels after 8-Week Treatment in AVIATOR

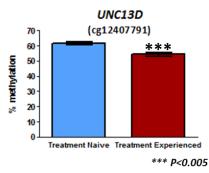
Methylation at IFNλ3 may distinguish difficult to treat subjects


Failure to achieve SVR due to premature discontinuation or lost to follow-up was not included in the analysis

Identification of Additional Gene Methylations Correlating with Response to HCV Therapy


- Hypothesis are other DNA methylation regions potential biomarkers for defining response to therapy in treatment naïve vs. experienced subjects
- 450k methylation chips were run on treatment-naïve and treatment-experienced subjects
- DNA samples from HCV-infected subjects came from clinical trials AVIATOR, NAVIGATOR, M11-602, M12-114.
 - N Engl J Med 16:222; N Engl J Med 16:222; N Engl J Med 370:1604; N Engl J Med 370:1594; N Engl J Med 370:1973; N Engl J Med 370:1983

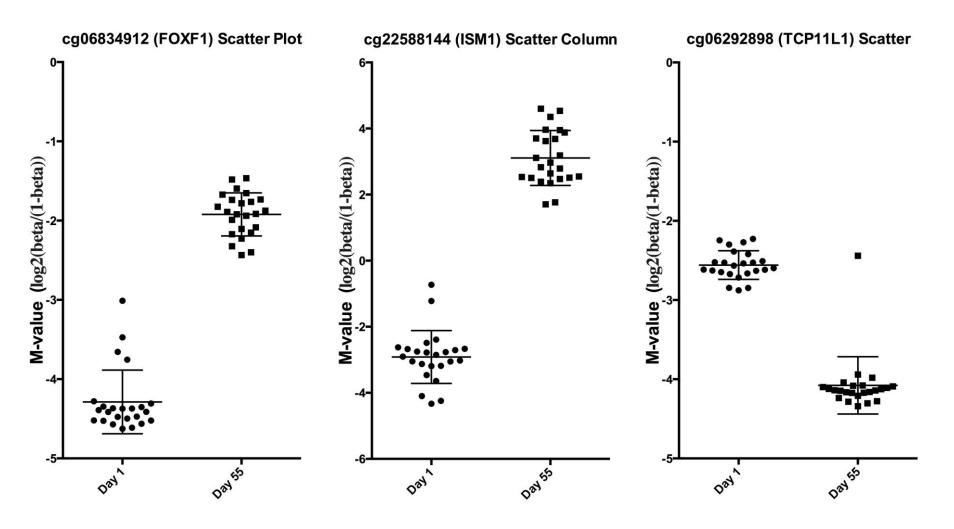



HCV Peg-IFN DNA Methylation Changes in HCV Treatment Naïve vs. Treatment Experienced Subjects

abbvie

abbvie

The Abbvie Experience with Drug Responder Methylation Biomarkers


DNA Methylation as a Pharmacodynamic (PD) Biomarker of Drug Action

Methylation
PD MarkerStrong significantly differential methylation was detected
in Healthy Subjects treated with drug

- This Drug should affect T Cell activity
- Experiment compared whole blood DNA samples from baseline and D55 post-treatment
- A number methylation sites were found to be significantly differentially methylated
 - Top 10 hits range from P-values of 10⁻¹¹ to 10⁻²⁶
- Analyzed:
 - Correlation of individual SNPs to D1 or D55 samples
 - Bioinformatic analysis of nearest genes to the methylation sites
 - Pathways analysis of the nearest neighbor genes
- Ongoing analysis
 - Clustering of differentially methylated sites into promotor islands
 - Comparison to ENCODE methylation maps for known functional sites

Methylation PD Marker The top Methylation site show strong differentiation of baseline and Day 55 time point

Top 10 Methylation sites showed nearly bimodal methylation

Top nearest neighbor hits are among known T cell function genes – TRIM27 as an example

Tripartite motif containing protein 27 negatively regulates CD4 T cells by ubiquitinating and inhibiting the class II PI3K-C2β

Xinjiang Cai^{a,b}, Shekhar Srivastava^{a,b}, Yi Sun^{a,b}, Zhai Li^{a,b}, Haiyan Wu^c, Ljiljana Zuvela-Jelaska^d, Jun Li^d, Rachel S. Salamon^c, Jonathan M. Backer^c, and Edward Y. Skolnik^{a,b,e,1}

^aThe Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, ^eDivision of Nephrology, Department of Medicine, ^bDepartment of Pharmacology, New York University Langone Medical Center, New York, NY 10016; ^cDepartment of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461; and ^dBoehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877

- TRIM27 was the top hit gene
 - 3 most significant single methylation site
 - 9 different local methylation sites were affected

Many Canonical Pathways of T cell function are predicted by the Methylation Patterns to be affected

The nearest neighbor genes to the methylation sites were analyzed with Ingenuity Pathway Analyst to predict those pathways affected by drug

The results were then filtered on pathways with known immunologic function

- CXCR4 Signaling
- PTEN Signaling
- NF-kB Signaling
- STAT3 pathway
- NFAT signaling
- fMLP signaling in Neutrophils

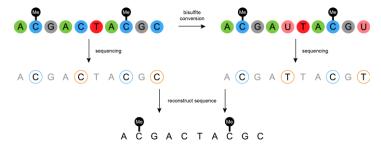
- IL-8 signaling
- Leukocyte Extravasation Signalling
- PIK3 signalling in B cells
- CCR3 signaling in eosinophils
- IL-1 signaling

Methylation PD Marker Four immune cellular functions were predicted to be controlled by the affected pathways

Nearest neighbors genes to the differentially methylated sites indicate four immune pathways affected by drug

- T cell homeostasis (p=1.86⁻⁷)
- T cell development (p=1.89⁻⁷)
- Differentiation of T lymphocytes (p=8.08⁻⁷)
- Migration of memory T lymphocytes (p=5.05⁻⁵)

abbvie

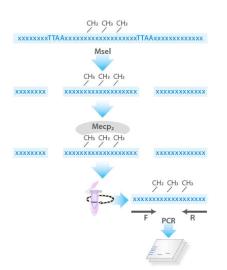

Using Methylation in Pharmacogenetics

Factors to control for & tools for methylation

Tools for Methylation Assays and Data Analysis

Assay Methods

- Illumina Infinium HumanMethylation450 BeadChip
- Whole Genome Bisulfide sequencing

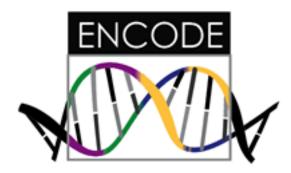


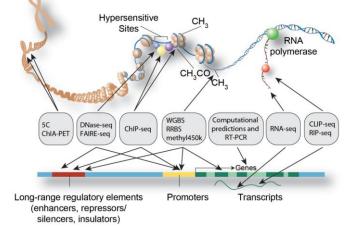
Proc. Natl. Acad. Sci. USA Vol. 93, pp. 9821–9826, September 1996 Medical Sciences

Methylation-specific PCR: A novel PCR assay for methylation status of CpG islands

(DNA methylation/tumor suppressor genes/p16/p15)

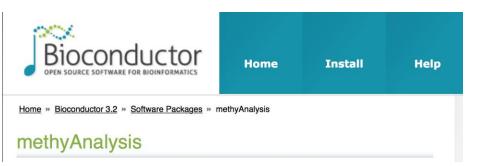
JAMES G. HERMAN^{*†}, JEREMY R. GRAFF^{*}, SANNA MYÖHÄNEN^{*}, BARRY D. NELKIN^{*}, AND STEPHEN B. BAYLIN^{*‡}




TRADUCTION DOLLAR

Tools for Methylation Assays and Data Analysis

Data Analysis


• ENCODE project (Encyclopedia of DNA Elements)

Modified from PLoSBiol 9:e1001046

• methylANALYSIS: an R Package for DNA Methylation Data

We'd like to thank

- The many patients who participated in these clinical studies
- The Abbvie Clinical Pharmacology Research Unit
- Abbvie Clinical Development
- Abbvie Infectious Disease Development
- Abbvie Discovery Immunology
- The Abbvie Department of Pharmacogenetics & Pharmacogenomics

abbvie